
THE COBRA
PROGRAMMING LANGUAGE

San Diego .NET User Group

June 2009

cobra-language.com

1

YOUR SPEAKER

Chuck Nor^H^H^H Esterbrook

AKA “Cobra Commander”

Independent contractor / consultant

Based in Los Angeles

Chuck.Esterbrook@gmail.com

2

mailto:Chuck.Esterbrook@gmail.com
mailto:Chuck.Esterbrook@gmail.com

INTRO

Cobra is a fairly new language (sub 1.0)

Object-oriented, imperative

Embraces unit tests, contracts and more

General purpose. Open source.

Runs on .NET & Mono. JVM later this year

Windows, Mac, Linux, Solaris, etc.

3

WHY?

It’s a HUGE amount of work to create a language

Especially one with a rich feature set

So why do it?

4

MOTIVATION

Clean, expressive syntax (Python, Ruby)

Run-time performance (C#, C++)

Static and dynamic typing (Objective-C, VB)

Contracts (Eiffel, Spec#)

Nil tracking (Spec#, iihtdioa.C#)

Productivity boosters are scattered across languages

Not mutually exclusive! Yet, must decide per project.

5

GET IT ALL

Clean, expressive syntax (Cobra, Python, Ruby)

Run-time performance (Cobra, C#, C++)

Static and dynamic typing (Cobra, Objective-C, VB)

Contracts (Cobra, Eiffel, Spec#)

Nil tracking (Cobra, Spec#)

Now in one place: Cobra

Goal is maximum productivity

6

INFLUENCES

The “Big Four”

Python, C#, Eiffel, Objective-C

Others

Visual Basic, D, Boo, Smalltalk

Originally conceived of as a cross between
Python and Objective-C

- show code -
7

NO NIL UNLESS I SAY SO

Problems:

NullReferenceExceptions happen
one at a time at run-time

Methods don’t indicate if they return or accept it

def nodeFor(name as String) as Node?

def nodeFor(name as String?) as Node?

Compile-time detection happens
many times at compile-time
- show code - Anders H, C#, iihtdioa...

8

SQUEAKY CLEAN SYNTAX

Python-like

Light on symbols; strong on indentation, keywords

list literals, dict literals, set literals

in / not in, is vs. ==

But even cleaner!

Straight forward properties

Other tweaks. Ex: /# ... #/ comments

- show code -
9

DYNAMIC OR STATIC? BOTH!

Programmers should choose,
not language designers

Objective-C has been doing it for ~20 years
Others include Visual Basic and Boo. Upcoming C#

def add(a as int, b as int) as int

def add(a, b) as dynamic

There are pros and cons to both

Don’t have to switch languages to switch approaches

10

DYNAMIC IS CLEARLY BEST!

def add(a, b) as dynamic
 return a + b

Flexible

Fast coding and prototyping

Less brittle w.r.t. changes

More reusable

11

STATIC IS CLEARLY BEST!

def nodeFor(name as String) as INode?

Compile-time detection of errors

Multiple errors reported at once

Fast at run-time

Slim too (no boxing)

Easy Intellisense. More self-documenting.

- show code -
12

PERFORMANCE

Performance can be very important

... financial analysis, video games, compilers, AI, ...

Performance can become important

Yahoo Mail: Python, then C++

AI company: Ruby prototype, then C++

Cobra compiles and leans towards static (~C#/Java)

“i = 5” infers “i” as an “int”

13

SCRIPTING CONVENIENCE

Compile and run in one command:
 > cobra foo.cobra

#! line on Unix-like systems

Clean syntax is a hallmark of some scripting languages

Dynamic binding is a hallmark of scripting languages

14

CONTRACTS

def nodeFor(name as String) as INode?
 require name.length
 ensure
 result.name.toLower == name.toLower
 ...

Supports invariant, old, result and implies

Inheritance works

Eiffel-style: the “real thing”

Future? Integrate with Spec# backend
- show code -

15

UNIT TESTS

def capped(s as String) as String is shared
 test
 assert Utils.capped(‘aoeu’) == ‘Aoeu’
 assert Utils.capped(‘’) == ‘’
 expect NullArgumentException
 Utils.capped(nil) # ahem
 body
 ...

Same motivations as doc strings:
 localized, encourage use, get people on same page

- show code -
16

MIX-INS ARE NEW

Break out of single inheritance

VM does not support so
this is all compile-time magic

+ Save time

+ Reduce coding

+ Catch errors

“Alpha” feature - not complete

17

ACCURATE MATH ALREADY

0.1 added ten times is what?
 In most languages: not 1.0!

Python:
 >>> .1+.1+.1+.1+.1+.1+.1+.1+.1+.1
 0.99999999999999989
 >>> assert 1.0 == .1+.1+.1+.1+.1+.1+.1+.1+.1+.1
 AssertionError

Cobra supports both decimal and float (64/32-bit)

Defaults to decimal because it’s 2009 for Turing’s sake

18

CHANGE DEFAULT

With -number option, you can choose
float64 or float32 instead

number is a built-in type that represents this default

 def add(a as number, b as number) as number
 return a + b

I rarely use decimal, float or float32 anymore.

- show code -
19

INTEGRATIONS

Today

Various editors (see wiki)

Any .NET tool for byte code:
profilers, analysis, obfuscation, etc.

Reflector, Nant, Pygments

Tomorrow

MSBuild, Visual Studio, DLR, MS Contracts, Pex

20

VEND TO C# AND VB

You can vend class libraries to C# and VB,
both technically and practically.

Super-C# features like non-nil degrade gracefully

Technically: .NET/Mono DLLs and CLI-style classes

Practically

Cobra favors .NETisms like generic lists

Can embed Cobra run-time (avoid Cobra.Lang.dll)

21

THEME: CODER’S CHOICE

This is in keeping with the “coder’s choice” theme:

Choose static or dynamic

Choose default numeric representation

Unit tests or not

Contracts or not

In the future: .NET, JVM or Obj-C

22

THEME: QDD

Quality Driven Development
(because we’re do for another XDD)

Doc Strings

Unit Tests

Nil/Null Tracking

Assertions

Contracts

23

THEME: PRODUCTIVITY

Better error checking => Fewer trips to run-time

Static and Dynamic => Flexibility

Unit tests and Contracts => Specify what’s easy

Clean syntax => Fast to read, write and maintain

Note: Concerned with medium+ sized programs.

24

THEME: PLAYS NICE

Consumes other binaries (.dll, .exe, .class)
with no extra steps

Uses standard library classes like List<>,
Dictionary<>, etc.

Produces VM-standard binaries/byte-code that can be
consumed by other languages (C#, VB, Java, etc.)

25

THE COMPILER

Self-implemented a.k.a “self-hosted”

Usual phases:
 tokenize, parse, AST nodes, analysis, code gen

Something different: chose C# as backend over IL

Growing number of “super-VM” features in C#

Faster implementation

Piggy back on error checking and cmd line options

- show code -
26

OPEN SOURCE FTW

MIT license

Typical pros: contribs, transparency, early access to
new fixes and features, cannot disappear on you

Typical cons: um, any cons?
maybe: no full-timers on this project

self hosted + open source = you can read compiler!

install-from-workspace

Discussion boards, Wiki, Tickets, Subversion

27

WEAKNESSES

Mix-ins feature not ready yet

JVM back-end not done yet

No IDE plug-ins, but we do have editor plug-ins.

No interactive prompt

28

COMPARED TO PYTHON

Best place: http://cobra-language.com/docs/python/

Better error checking, Compile-time nil tracking

First class contracts and unit tests

Speed, Default to accurate math

Syntax, Self-hosted

Disadvantages: Maturity, Docs, Less malleable

29

http://cobra-language.com/docs/python/
http://cobra-language.com/docs/python/

ONGOING WORK

JVM back-end

Always refinements and fixes

Apply patches

Monthly updates

Next release: 0.9

Should be close to final feature set
and syntax of Cobra 1.0

30

COMMERCIALISM

In 2007 Q3+Q4, I worked full time on Cobra.
Paid rent with savings (and a poker tournament).

In 2008, return to contracting.
Less time for Cobra. :-(

Ideas:

IDE or VS plug-in, Book

App Server, Web Ads

Bad idea: Corporate sponsors

31

FUTURE FEATURES

Context: Be the best, most productive, high-level,
general-purpose OO language. Be popular.

JVM, Objective-C, Python?, Parrot?

Full LINQ

traits / subtypes ...

DLR integration

Language level reg-ex (maybe)

32

MORE FUTURE FEATURES

More sophisticated unit test features

Units of measurement (feet, meters, ...)

Compile-time analysis of contracts

 def foo(thing)
 require
 thing responds to (get name as String)

33

THE FAR FUTURE

Parallel programming

Futures / lazy arguments

Macros?

Would be nice to leverage .NET advances
as with generics, LINQ, etc.

34

THE FAR, FAR FUTURE

Cobra has compile-time nil tracking and contracts

Microsoft has Pex and Spec# / Boogie

Could we eventually get here:

Detect all technical errors at compile-time
in < 5 secs

Leave slower run-time tests and round-tripping
to domain logic issues only

35

JOIN THE FUN

You can help!

Participate in the forums, wiki and issue tickets

Write sample code

Blog, discuss, write

Write a cool app or library

Patch the open source compiler

36

FIN

cobra-language.com

cobra-language.com/docs/why

cobra-language.com/docs/python

Sample programs, How To, Documentation, Forums

cobralang.blogspot.com

http://cobra-language.com/docs/contact/

37

mailto:Chuck.Esterbrook@gmail.com
mailto:Chuck.Esterbrook@gmail.com

