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YOUR SPEAKER
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AKA “Cobra Commander”

Independent contractor / consultant

Based in Los Angeles

Chuck.Esterbrook@gmail.com
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INTRO

Cobra is a fairly new language (sub 1.0)

Object-oriented, imperative

Embraces unit tests, contracts and more

General purpose.  Open source.

Runs on .NET & Mono.  JVM later this year

Windows, Mac, Linux, Solaris, etc.
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WHY?

It’s a HUGE amount of work to create a language

Especially one with a rich feature set

So why do it?
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MOTIVATION

Clean, expressive syntax (Python, Ruby)

Run-time performance (C#, C++)

Static and dynamic typing (Objective-C, VB)

Contracts (Eiffel, Spec#)

Nil tracking (Spec#, iihtdioa.C#)

Productivity boosters are scattered across languages

Not mutually exclusive!  Yet, must decide per project.
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GET IT ALL

Clean, expressive syntax (Cobra, Python, Ruby)

Run-time performance (Cobra, C#, C++)

Static and dynamic typing (Cobra, Objective-C, VB)

Contracts (Cobra, Eiffel, Spec#)

Nil tracking (Cobra, Spec#)

Now in one place: Cobra

Goal is maximum productivity
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INFLUENCES

The “Big Four”

Python,  C#,  Eiffel,  Objective-C

Others

Visual Basic, D, Boo, Smalltalk

Originally conceived of as a cross between
Python and Objective-C

- show code -
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NO NIL UNLESS I SAY SO

Problems:

NullReferenceExceptions happen
one at a time at run-time

Methods don’t indicate if they return or accept it

def nodeFor(name as String) as Node?

def nodeFor(name as String?) as Node?

Compile-time detection happens
many times at compile-time
- show code - Anders H, C#, iihtdioa...
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SQUEAKY CLEAN SYNTAX

Python-like

Light on symbols; strong on indentation, keywords

list literals, dict literals, set literals

in / not in, is vs. ==

But even cleaner!

Straight forward properties

Other tweaks.  Ex: /# ... #/ comments

- show code -
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DYNAMIC OR STATIC? BOTH! 

Programmers should choose,
not language designers

Objective-C has been doing it for ~20 years
Others include Visual Basic and Boo. Upcoming C#

def add(a as int, b as int) as int

def add(a, b) as dynamic

There are pros and cons to both

Don’t have to switch languages to switch approaches
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DYNAMIC IS CLEARLY BEST!

def add(a, b) as dynamic
      return a + b

Flexible

Fast coding and prototyping

Less brittle w.r.t. changes

More reusable
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STATIC IS CLEARLY BEST!

def nodeFor(name as String) as INode?

Compile-time detection of errors

Multiple errors reported at once

Fast at run-time

Slim too (no boxing)

Easy Intellisense. More self-documenting.

- show code -
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PERFORMANCE

Performance can be very important

... financial analysis, video games, compilers, AI, ...

Performance can become important

Yahoo Mail: Python, then C++

AI company: Ruby prototype, then C++

Cobra compiles and leans towards static (~C#/Java)

“i = 5” infers “i” as an “int”
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SCRIPTING CONVENIENCE

Compile and run in one command:
      > cobra foo.cobra

#! line on Unix-like systems

Clean syntax is a hallmark of some scripting languages

Dynamic binding is a hallmark of scripting languages
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CONTRACTS

def nodeFor(name as String) as INode?
     require name.length
     ensure
         result.name.toLower == name.toLower
     ...

Supports invariant, old, result and implies

Inheritance works

Eiffel-style: the “real thing”

Future? Integrate with Spec# backend
- show code -
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UNIT TESTS

def capped(s as String) as String is shared
    test
        assert Utils.capped(‘aoeu’) == ‘Aoeu’
        assert Utils.capped(‘’) == ‘’
        expect NullArgumentException
            Utils.capped(nil)  # ahem
    body
        ...

Same motivations as doc strings:
    localized, encourage use, get people on same page

- show code -
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MIX-INS ARE NEW

Break out of single inheritance

VM does not support so
this is all compile-time magic

+ Save time

+ Reduce coding

+ Catch errors

“Alpha” feature - not complete
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ACCURATE MATH ALREADY

0.1 added ten times is what?
    In most languages: not 1.0!

Python:
    >>> .1+.1+.1+.1+.1+.1+.1+.1+.1+.1
    0.99999999999999989
    >>> assert 1.0 == .1+.1+.1+.1+.1+.1+.1+.1+.1+.1
    AssertionError

Cobra supports both decimal and float (64/32-bit)

Defaults to decimal because it’s 2009 for Turing’s sake
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CHANGE DEFAULT

With -number option, you can choose
float64 or float32 instead

number is a built-in type that represents this default

 def add(a as number, b as number) as number
  return a + b

I rarely use decimal, float or float32 anymore.

- show code -
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INTEGRATIONS

Today

Various editors (see wiki)

Any .NET tool for byte code:
profilers, analysis, obfuscation, etc.

Reflector, Nant, Pygments

Tomorrow

MSBuild, Visual Studio, DLR, MS Contracts, Pex
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VEND TO C# AND VB 

You can vend class libraries to C# and VB,
both technically and practically.

Super-C# features like non-nil degrade gracefully

Technically: .NET/Mono DLLs and CLI-style classes

Practically

Cobra favors .NETisms like generic lists

Can embed Cobra run-time (avoid Cobra.Lang.dll)
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THEME: CODER’S CHOICE

This is in keeping with the “coder’s choice” theme:

Choose static or dynamic

Choose default numeric representation

Unit tests or not

Contracts or not

In the future:  .NET,  JVM or Obj-C
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THEME: QDD

Quality Driven Development
(because we’re do for another XDD)

Doc Strings

Unit Tests

Nil/Null Tracking 

Assertions

Contracts
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THEME: PRODUCTIVITY

Better error checking  =>  Fewer trips to run-time

Static and Dynamic  =>  Flexibility

Unit tests and Contracts  =>  Specify what’s easy

Clean syntax  =>  Fast to read, write and maintain

Note: Concerned with medium+ sized programs.
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THEME: PLAYS NICE

Consumes other binaries (.dll, .exe, .class)
with no extra steps

Uses standard library classes like List<>, 
Dictionary<>, etc.

Produces VM-standard binaries/byte-code that can be 
consumed by other languages (C#, VB, Java, etc.)
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THE COMPILER

Self-implemented a.k.a “self-hosted”

Usual phases:
    tokenize, parse,  AST nodes, analysis, code gen

Something different: chose C# as backend over IL

Growing number of “super-VM” features in C#

Faster implementation

Piggy back on error checking and cmd line options

- show code -
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OPEN SOURCE FTW

MIT license

Typical pros: contribs, transparency, early access to 
new fixes and features, cannot disappear on you

Typical cons: um, any cons?
maybe: no full-timers on this project

self hosted + open source = you can read compiler!

install-from-workspace

Discussion boards, Wiki, Tickets, Subversion
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WEAKNESSES

Mix-ins feature not ready yet

JVM back-end not done yet

No IDE plug-ins, but we do have editor plug-ins.

No interactive prompt
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COMPARED TO PYTHON

Best place:  http://cobra-language.com/docs/python/

Better error checking, Compile-time nil tracking

First class contracts and unit tests

Speed, Default to accurate math

Syntax, Self-hosted

Disadvantages: Maturity, Docs, Less malleable
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ONGOING WORK

JVM back-end

Always refinements and fixes

Apply patches

Monthly updates

Next release: 0.9

Should be close to final feature set
and syntax of Cobra 1.0
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COMMERCIALISM

In 2007 Q3+Q4, I worked full time on Cobra.
Paid rent with savings (and a poker tournament).

In 2008, return to contracting.
Less time for Cobra.   :-(

Ideas:

IDE or VS plug-in, Book

App Server, Web Ads

Bad idea: Corporate sponsors
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FUTURE FEATURES

Context: Be the best, most productive, high-level, 
general-purpose OO language. Be popular.

JVM, Objective-C, Python?, Parrot?

Full LINQ

traits / subtypes ...

DLR integration

Language level reg-ex (maybe)
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MORE FUTURE FEATURES

More sophisticated unit test features

Units of measurement (feet, meters, ...) 

Compile-time analysis of contracts

 def foo(thing)
     require
        thing responds to (get name as String)
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THE FAR FUTURE

Parallel programming

Futures / lazy arguments

Macros?

Would be nice to leverage .NET advances
as with generics, LINQ, etc.
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THE FAR, FAR FUTURE

Cobra has compile-time nil tracking and contracts

Microsoft has Pex and Spec# / Boogie

Could we eventually get here:

Detect all technical errors at compile-time
in < 5 secs

Leave slower run-time tests and round-tripping
to domain logic issues only
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JOIN THE FUN

You can help!

Participate in the forums, wiki and issue tickets

Write sample code

Blog, discuss, write

Write a cool app or library

Patch the open source compiler
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FIN

cobra-language.com

cobra-language.com/docs/why

cobra-language.com/docs/python

Sample programs, How To, Documentation, Forums

cobralang.blogspot.com

http://cobra-language.com/docs/contact/
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