
THE COBRA
PROGRAMMING LANGUAGE

At the SoCal Piggies, Feb 2008

cobra-language.com

Chuck Esterbrook

INTRO

Cobra is a new language (sub 1.0)

Object-oriented, imperative

Embraces unit tests, contracts and more

General purpose

Runs on .NET & Mono

Windows, Mac, Linux, Solaris, etc.

MOTIVATION

Productivity boosters are scattered across languages

Clean syntax (Python, Ruby)

Run-time performance (C#, C++)

Static and dynamic typing (Objective-C, VB)

Contracts (Eiffel, Spec#)

Nil tracking (Spec#, iihtdioa.C#)

Not mutually exclusive!

I WANT IT ALL

No more jumping around

Clean syntax (Cobra, Python, Ruby)

Run-time performance (Cobra, C#, C++)

Static and dynamic typing (Cobra, Objective-C, VB)

Contracts (Cobra, Eiffel, Spec#)

Nil tracking (Cobra, Spec#, iihtdioa.C#)

Goal is maximum productivity

INFLUENCES

The “Big Four”

Python, C#, Eiffel, Objective-C

Others

Visual Basic, D, Boo, Smalltalk

Originally conceived of as a cross between
Python and Objective-C

NO NIL UNLESS I SAY SO

NullReferenceExceptions happen
one at a time at run-time

Method sigs don’t indicate if they return or accept it

def nodeFor(name as String) as Node?

def nodeFor(name as String?) as Node?

Compile-time detection happens
many times at compile-time

SQUEAKY CLEAN SYNTAX

Python-like

Light on symbols, indented blocks, keywords

list literals, dict literals, (soon) set literals

in / not in, is vs. ==

But even cleaner!

Straight forward properties

Other tweaks

DYNAMIC OR STATIC? BOTH!

Programmers should choose,
not language designers

Objective-C has been doing it for ~20 years
Others include Visual Basic and Boo

def add(a as int, b as int) as int

def add(a, b) as dynamic

There are pros and cons to both

Don’t have to switch languages to switch approaches

DYNAMIC IS CLEARLY BEST!

def add(a, b) as dynamic
 return a + b

Flexible

Fast coding and prototyping

Less brittle w.r.t. changes

More reusable

STATIC IS CLEARLY BEST!

def nodeFor(name as String) as INode?

Compile-time detection of errors

Multiple errors reported at once

Fast at run-time

Slim too (no boxing)

Easy Intellisense

PERFORMANCE

Performance can be very important

... financial analysis, video games, compilers, AI, ...

Performance can become important

Yahoo Mail: Python, then C++

AI company: Ruby prototype, then C++

Cobra compiles and leans towards static

“i = 5” infers “i” as an “int”

SCRIPTING CONVENIENCE

Compile and run in one command:
 > cobra foo.cobra

#! line on Unix-like systems

Clean syntax is a hallmark of some scripting languages

Dynamic binding is a hallmark of scripting languages

CONTRACTS

def nodeFor(name as String) as INode?
 require name.length
 ensure
 result.name.toLower == name.toLower
 ...

Supports invariant, old, result and implies

Inheritance works

Eiffel-style: the “real thing”

Future? Integrate with Spec# backend

UNIT TESTS

def capped(s as String) as String is shared
 test
 assert Utils.capped(‘aoeu’) == ‘Aoeu’
 assert Utils.capped(‘’) == ‘’
 expect NullArgumentException
 Utils.capped(nil) # ahem
 body
 ...

Same motivations as doc strings:
 localized, encourage use, get people on same page

ACCURATE MATH IN 2008

0.1 added ten times is what?
 In most languages: not 1.0!

Python:
 >>> .1+.1+.1+.1+.1+.1+.1+.1+.1+.1
 0.99999999999999989
 >>> assert 1.0 == .1+.1+.1+.1+.1+.1+.1+.1+.1+.1
 AssertionError

Cobra supports both decimal and float (64-bit)

Defaults to decimal because it’s 2008

THE COMPILER

Self-implemented a.k.a “self-hosted”

Usual phases:
 tokenize, parse, AST nodes, analysis, code gen

Something different: chose C# as backend over IL

Growing number of “super-VM” features in C#

Faster implementation

Piggy back on error checking and cmd line options

VEND TO C# AND VB

You can vend class libraries to C# and VB,
both technically and practically.

Super-C# features like non-nil degrade gracefully

Technically: .NET/Mono DLLs and CLI-style classes

Practically

Cobra favors .NETisms like generic lists

Can embed Cobra run-time (avoid Cobra.Lang.dll)

WEAKNESSES

Maturity - still gaps and some bugs

More nifty features not implemented
than I would prefer (upcoming slide)

No IDE plug-ins

No interactive prompt

COMPARED TO PYTHON

Best place: http://cobra-language.com/docs/python/

Better error checking, Compile-time nil tracking

First class contracts and unit tests

Speed, Default to accurate math

Syntax, Self-hosted

Disadvantges: Maturity, Docs, Less malleable

http://cobra-language.com/docs/python/
http://cobra-language.com/docs/python/

FEBRUARY 2008!

From January presentation:

An exciting month for Cobra!

Leaving “stealth mode” (Lang.NET, InfoWorld)

Open sourcing the compiler (tonight)

Discussion forums (done)

Wiki (next week?)

Issue tracker (next week?)

THIS WEEK == CRAZY WEEK

Present Cobra to Pythons

eWeek article on Friday

Open the source on Thu/Friday

Cut a new release on Thu/Friday

Hold down a job.

Saturday: Hopefully get Trac working.

MARCH 2008!

More fixes and refinements

Apply patches

Start Visual Cobra

More fixes and refinements

Release early, Release often!

COMMERCIALISM

In 2007, I worked full time on Cobra.
Paid rent with savings (and a poker tournament).

In 2008, return to contracting.
Less time for Cobra. :-(

Ideas:

Visual Cobra / VS PlugIn

Book, Web site ads

Microsoft | Novell sponsors Cobra :-)

FUTURE FEATURES

Context: Be the best, most productive, high-level,
general-purpose OO language.

Full LINQ and friends (lambdas, etc.)

Language level reg-ex

Built-in Set

mix-ins / traits / ...

DLR integration

MORE FUTURE FEATURES

More sophisticated unit test features

Units of measurement (feet, meters, ...)

Compile-time analysis of contracts
 def foo(thing)
 require
 thing responds to (get name as String)

Multiple backends
 JVM, Objective-C, D, LLVM, Parrot, ...

THE FAR FUTURE

Parallel programming

Futures / lazy arguments

Macros

Would be nice to leverage .NET advances as with
generics, LINQ, etc.

THE FAR, FAR FUTURE

Cobra has compile-time nil tracking and contracts

Microsoft has Pex and Spec# / Boogie

Could we eventually get here:

Detect all technical errors at compile-time
in < 60 secs

Leave slower run-time tests and round-tripping
to domain logic issues only

JOIN THE FUN

You can help!

Participate in the forums, wiki and issue tickets

Write sample code

Blog, discuss, write

Write a cool app or library

Patch the open source compiler

WEB SITE

cobra-language.com

cobra-language.com/docs/why

cobra-language.com/docs/python

Sample programs, How To, Documentation, Forums

cobralang.blogspot.com

Chuck.Esterbrook@gmail.com

mailto:Chuck.Esterbrook@gmail.com
mailto:Chuck.Esterbrook@gmail.com

